Regular Uniform Hypergraphs, s-Cycles, s-Paths and Their largest Laplacian H-Eigenvalues∗

نویسندگان

  • Liqun Qi
  • Jia-Yu Shao
  • Qun Wang
چکیده

In this paper, we show that the largest signless Laplacian H-eigenvalue of a connected k-uniform hypergraph G, where k ≥ 3, reaches its upper bound 2∆(G), where ∆(G) is the largest degree of G, if and only if G is regular. Thus the largest Laplacian H-eigenvalue of G, reaches the same upper bound, if and only if G is regular and oddbipartite. We show that an s-cycle G, as a k-uniform hypergraph, where 1 ≤ s ≤ k−1, is regular if and only if there is a positive integer q such that k = q(k − s). We show that an even-uniform s-path and an even-uniform non-regular s-cycle are always oddbipartite. We prove that a regular s-cycle G with k = q(k − s) is odd-bipartite if and only if m is a multiple of 2t0 , where m is the number of edges in G, and q = 20(2l0 +1) for some integers t0 and l0. We identify the value of the largest signless Laplacian Heigenvalue of an s-cycle G in all possible cases. When G is odd-bipartite, this is also its largest Laplacian H-eigenvalue. We introduce supervertices for hypergraphs, and show the components of a Laplacian H-eigenvector of an odd-uniform hypergraph are equal if such components corresponds vertices in the same supervertex, and the corresponding Laplacian H-eigenvalue is not equal to the degree of the supervertex. Using this property, we show that the largest Laplacian H-eigenvalue of an odd-uniform generalized loose s-cycle G is equal to ∆(G) = 2. We also show that the largest Laplacian H-eigenvalue of a k-uniform tight s-cycle G is not less than ∆(G) + 1, if the number of edges is even and k = 4l + 3 for some nonnegative integer l.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The clique and coclique numbers’ bounds based on the H-eigenvalues of uniform hypergraphs

In this paper, some inequality relations between the Laplacian/signless Laplacian H-eigenvalues and the clique/coclique numbers of uniform hypergraphs are presented. For a connected uniform hypergraph, some tight lower bounds on the largest Laplacian H+-eigenvalue and signless Laplacian H-eigenvalue related to the clique/coclique numbers are given. And some upper and lower bounds on the clique/...

متن کامل

Some Spectral Properties of Uniform Hypergraphs

For a k-uniform hypergraph H, we obtain some trace formulas for the Laplacian tensor of H, which imply that ∑n i=1 d s i (s = 1, . . . , k) is determined by the Laplacian spectrum of H, where d1, . . . , dn is the degree sequence of H. Using trace formulas for the Laplacian tensor, we obtain expressions for some coefficients of the Laplacian polynomial of a regular hypergraph. We give some spec...

متن کامل

H-eigenvalues of Laplacian and Signless Laplacian Tensors

We propose a simple and natural definition for the Laplacian and the signless Laplacian tensors of a uniform hypergraph. We study their H-eigenvalues, i.e., H-eigenvalues with nonnegative H-eigenvectors, and H-eigenvalues, i.e., H-eigenvalues with positive H-eigenvectors. We show that each of the Laplacian tensor, the signless Laplacian tensor, and the adjacency tensor has at most one H-eigenva...

متن کامل

Seidel Signless Laplacian Energy of Graphs

Let $S(G)$ be the Seidel matrix of a graph $G$ of order $n$ and let $D_S(G)=diag(n-1-2d_1, n-1-2d_2,ldots, n-1-2d_n)$ be the diagonal matrix with $d_i$ denoting the degree of a vertex $v_i$ in $G$. The Seidel Laplacian matrix of $G$ is defined as $SL(G)=D_S(G)-S(G)$ and the Seidel signless Laplacian matrix as $SL^+(G)=D_S(G)+S(G)$. The Seidel signless Laplacian energy $E_{SL^+...

متن کامل

Loose laplacian spectra of random hypergraphs

Let H = (V , E) be an r-uniform hypergraph with the vertex set V and the edge set E. For 1 ≤ s ≤ r/2, we define a weighted graph G(s) on the vertex set (Vs) as follows. Every pair of s-sets I and J is associated with a weight w(I , J), which is the number of edges in H containing I and J if I ∩ J = ∅, and 0 if I ∩ J = ∅. The s-th Laplacian L(s) of H is defined to be the normalized Laplacian of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013